Developing placental CD34\textsuperscript+ derived natural killer cells with high affinity cleavage resistant CD16 (CYNK-101) and Cetuximab for enhancing therapy of EGFR\textsuperscript+ non-small cell lung and head and neck cancers

Irene Raltman, John Fitzgerald, Valentina Rousseva, Salvatore Rotondo, Xuan Guo, Hemlata Rana, Andrea DiFiglia, Tanei Mohikako, Shuyang He, Lin Kang, Robert Haraki and Xiaokui Zhang

These authors contributed equally

Cellularity Inc., Florham Park, NJ

ABSTRACT

CD34\textsuperscript+ placental-derived natural killer cells (pDCIKs) are a promising treatment for EGFR\textsuperscript+ non-small cell lung cancer (NSCLC) and head and neck cancer (HNC). Cetuximab is a monoclonal antibody against EGFR that is widely used in cancer therapy. However, cetuximab-resistant cells are known to emerge. To enhance the therapeutic efficacy of cetuximab, we sought to develop a cetuximab-resistant (Cetuximab-resistant Orphan Drug (CDROD)) CD16\textsuperscript+ natural killer cells (CD16\textsuperscript+ pDCIKs) with cetuximab-resistant ADCC (Cetuximab-resistant ADCC Natural Killer Cell (Cetuxin-resistant NK cell) or CD16\textsuperscript+ pDCIKs).

RESULTS

CD16\textsuperscript+ pDCIKs were co-cultured with Cetuximab-resistant CD16\textsuperscript+ pDCIKs (Cetuximab-resistant CD16\textsuperscript+ pDCIKs) to enhance their cetuximab activity. The CD16\textsuperscript+ pDCIKs were assessed by IgG activity (CD16\textsuperscript+ pDCIKs), ADCC activity (ADCC Natural Killer Cell (ADCC NK cell)), and FACS analyses (FACS Natural Killer Cell (FACS NK cell)). The co-cultured CD16\textsuperscript+ pDCIKs demonstrated enhanced cetuximab-dependent ADCC activity against Cetuximab-resistant CD16\textsuperscript+ pDCIKs and ADCC NK cells. These findings suggest that CD16\textsuperscript+ pDCIKs can be used as a potential therapy for cetuximab-resistant CD16\textsuperscript+ pDCIKs, providing a promising strategy for the treatment of EGFR\textsuperscript+ cancers.

INTRODUCTION

CD16\textsuperscript+ placental-derived natural killer cells (pDCIKs) are a promising treatment for EGFR\textsuperscript+ non-small cell lung cancer (NSCLC) and head and neck cancer (HNC). Cetuximab is a monoclonal antibody against EGFR that is widely used in cancer therapy. However, cetuximab-resistant cells are known to emerge. To enhance the therapeutic efficacy of cetuximab, we sought to develop a cetuximab-resistant (Cetuximab-resistant Orphan Drug (CDROD)) CD16\textsuperscript+ natural killer cells (CD16\textsuperscript+ pDCIKs).

Materials and Methods

CD16\textsuperscript+ pDCIKs were co-cultured with Cetuximab-resistant CD16\textsuperscript+ pDCIKs to enhance their cetuximab activity. The CD16\textsuperscript+ pDCIKs were assessed by IgG activity (CD16\textsuperscript+ pDCIKs), ADCC activity (ADCC Natural Killer Cell (ADCC NK cell)), and FACS analyses (FACS Natural Killer Cell (FACS NK cell)). The co-cultured CD16\textsuperscript+ pDCIKs demonstrated enhanced cetuximab-dependent ADCC activity against Cetuximab-resistant CD16\textsuperscript+ pDCIKs and ADCC NK cells. These findings suggest that CD16\textsuperscript+ pDCIKs can be used as a potential therapy for cetuximab-resistant CD16\textsuperscript+ pDCIKs, providing a promising strategy for the treatment of EGFR\textsuperscript+ cancers.

SUMMARY

CD16\textsuperscript+ placental-derived natural killer cells (pDCIKs) are a promising treatment for EGFR\textsuperscript+ non-small cell lung cancer (NSCLC) and head and neck cancer (HNC). Cetuximab is a monoclonal antibody against EGFR that is widely used in cancer therapy. However, cetuximab-resistant cells are known to emerge. To enhance the therapeutic efficacy of cetuximab, we sought to develop a cetuximab-resistant (Cetuximab-resistant Orphan Drug (CDROD)) CD16\textsuperscript+ natural killer cells (CD16\textsuperscript+ pDCIKs).

The CD16\textsuperscript+ pDCIKs were co-cultured with Cetuximab-resistant CD16\textsuperscript+ pDCIKs to enhance their cetuximab activity. The CD16\textsuperscript+ pDCIKs were assessed by IgG activity (CD16\textsuperscript+ pDCIKs), ADCC activity (ADCC Natural Killer Cell (ADCC NK cell)), and FACS analyses (FACS Natural Killer Cell (FACS NK cell)). The co-cultured CD16\textsuperscript+ pDCIKs demonstrated enhanced cetuximab-dependent ADCC activity against Cetuximab-resistant CD16\textsuperscript+ pDCIKs and ADCC NK cells. These findings suggest that CD16\textsuperscript+ pDCIKs can be used as a potential therapy for cetuximab-resistant CD16\textsuperscript+ pDCIKs, providing a promising strategy for the treatment of EGFR\textsuperscript+ cancers.